Reference (7)
Tidal potentials
Different sources can provide different tidal potentials, first we need to complete the solid-phase by providng the relevant surface boundary condition. Here we list some examples.
Loaded Surface
For an impermeable load,
\[y_2 = - \frac{(2\ell + 1) g(R)}{4 \pi G R}, \qquad y_4 = 0, \qquad y_6 = \frac{2\ell + 1}{R}, \qquad y_8 = 0\]
where $g(R)$ is the gravitational acceleration at the surface (e.g., Saito, 1974).
Lunar Tide
For a fully solid mantle, the boundary conditions at the surface are
\[y_3 = y_4 = 0, \qquad y_6 = - \frac{(2\ell + 1) g_s}{4} \frac{M_M}{M_E} \left(\frac{R_E}{a}\right)^3.\]
(see Takeuchi et al. 1972).
The final condition is
\[\pmb{P}_1\,\pmb{y}(a^-) = \begin{pmatrix} 0 \\[1em] 0 \\[1em] -\dfrac{(2\ell+1) g_s}{4} \dfrac{M_M}{M_E} \left(\dfrac{R_E}{a}\right)^3 \end{pmatrix}.\]
After having solved and generated the $k_2 (\sigma)$ spectrum, we can find the power input from tides.
Tidal Dissipation
The mode amplitude of the external tidal potential is
\[U_{22k} = \frac{G M_\star}{a} \left(\frac{R}{a}\right)^2 \sqrt{\frac{6\pi}{5}}\,X_{22k}(e),\]
The tidal power per mode is
\[P_{T,k} = \frac{5 R \sigma}{8\pi G} \,\Im\!\bigl[k_{2}(\sigma)\bigr] \,|U_{22k}|^2.\]
Such that the total tidal dissipation:
\[P_{\mathrm{tidal}} = -\sum_k P_{T,k}.\]